润滑油是用在各种类型汽车、机械设备上以减少摩擦,保护机械及加工件的液体或半固体润滑剂,主要起润滑、辅助冷却、防锈、清洁、密封和缓冲等作用(Roab)。
只要是应用于两个相对运动的物体之间,而可以减少两物体因接触而产生的磨擦与磨损之功能,即为润滑油。
基本含义
编辑
润滑油、润滑脂统而言之,为「润滑剂」之一种。而所谓润滑剂,简单地说,就是介于两个相对运动的物体之间,具有减少两个物体因接触而产生摩擦的功能者。
润滑油是一种技术密集型产品,是复杂的碳氢化合物的混合物,而其真正使用性能又是复杂的物理或化学变化过程的综合效应。润滑油的基本性能包括一般理化性能、特殊理化性能和模拟台架试验。
每一类润滑油脂都有其共同的一般理化性能,以表明该产品的内在质量。
(1) [lubricating oil]∶作润滑剂用的油(如石油的蒸馏物或脂肪质)
(2) [lubricant]∶涂在机器轴承或者人体某个部位等运动部分表面的油状液体。有减少摩擦、避免发热、防止机器磨损以及医学用途等作用。一般是分馏石油的产物,也有从动植物油中提炼的。包含“润滑脂”。一般为不易挥发的油状润滑剂。
组成成分
编辑
润滑油一般由基础油和添加剂两部分组成。基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足,赋予某些新的性能,是润滑油的重要组成部分。
基础油
润滑油基础油主要分矿物基础油、
合成基础油以及生物基础油三大类。矿物基础油应用广泛,用量很大(约95%以上),但有些应用场合则必须使用合成基础油和生物油基础油调配的产品,因而使这两种基础油得到迅速发展。
矿油基础油由原油提炼而成。润滑油基础油主要生产过程有:常减压蒸馏、溶剂脱沥青、溶剂精制、溶剂脱蜡、白土或加氢补充精制。1995年修订了中国现行的润滑油基础油标准,主要修改了分类方法,并增加了低凝和深度精制两类 基础油标准。矿物型润滑油的生产,重要的是选用的原油。
矿物基础油的化学成分包括高沸点、高分子量烃类和非烃类混合物。其组成一般为烷烃(直链、支链、多支链)、环烷烃(单环、双环、多环)、芳烃(单环芳烃、多环芳烃)、环烷基芳烃以及含氧、含氮、含硫有机化合物和胶质、沥青质等非烃类化合物。生物基础油(植物油)正越来越受欢迎,它可以生物降解而迅速的降低环境污染。合成润滑油具有低温性能优异,润滑性能好和使用寿命长等特点,可适用于高负荷、高转速、高真空、高能辐射和强氧化介质等环境。由于当今世界上所有的工业企业都在寻求减少对环境污染的措施,而这种”天然”润滑油正拥有这个特点,虽然植物油成本高,但所增加的费用足以抵消使用其它矿物油、合成润滑油所带来的环境治理费用。根据原油的性质和加工工艺分类
分为石蜡基基础油、中间基基础油、环烷基基础油
基础油分类
1995年对原标准进行了修订,执行润滑油基础油分类方法和规格标QSHR 001—95
该标准按黏度指数把基础油分类
类别
黏度指数VI
超高黏度指数(UHVI)
VI≥140
很高黏度指数(VHVI)
120≤VI<140
高黏度指数(HVI)
90≤VI<120
中黏度指数(MVI)
40≤VI<90
低黏度指数(LVI)
VI<40
添加剂
添加剂是近代润滑油的精髓,正确选用合理加入,可改善其物理化学性质,对润滑油赋予新的特殊性能,或加强其原来具有的某种性能,满足更高的要求。根据润滑油要求的质量和性能,对添加剂精心选择,仔细平衡,进行合理调配,是保证润滑油质量的关键。一般常用的添加剂有:粘度指数改进剂,倾点下降剂,抗氧化剂,清净分散剂,摩擦缓和剂,油性剂,极压添加剂,抗泡沫剂,金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂,抗氧抗腐剂等。
目前国内的主要添加剂生产商都在北方,因为相对于南方,在北方生产的添加剂含水量要小。
基础油生产工艺
编辑
传统生产工艺
20 世纪 30 年代,润滑油基础油的生产基本采用的是物理方法,即由溶剂精制、溶剂脱蜡和白土补充精制所构成的“老三套”传统工艺生产润滑油基础油。
(1)溶剂精制。溶剂精制是润滑油生产过程中的重要步骤,其主要作用是脱除油品中的稠环芳烃、胶质、沥青质等,使润滑油粘温性质、抗氧化安定性、残炭值、颜色等性质得到改善。该工艺较成熟,常用的溶剂有糠醛、酚和 N—甲基吡咯烷酮(NMP)。
(2)溶剂脱蜡。溶剂脱蜡工艺主要包括结晶、过滤、溶剂回收和冷冻四部分,其目的是除去油品中的石蜡,降低润滑油基础油的倾点。该工艺在加工较轻的原料时有技术优势,脱蜡油收率高、粘度指数较高。为了降低能耗、节省操作费用、减少投资,国内外润滑油基础油生产企业都采用溶剂脱蜡和蜡脱油联合工艺,近几年主要是在节能、提高油和蜡收率等技术方面有比较大的改进。
(3)白土补充精制。白土补充精制是使油与白土在一定温度下充分混合,利用活性白土表面的吸附性能,通过加热、蒸发、过滤等工序,将润滑油中的氮化物、胶质、沥青质、环烷酸皂、不饱和烃、选择性溶剂、水分、机械杂质等除去,从而改善油品颜色、降低残炭、提高油品的抗氧化安定性和抗乳化度。 [1]
加氢生产工艺
基础油中的理想组分是支链烷烃( 异构烷烃) 和带有长烷基侧链的单环环烷烃,非理想组分则是稠环芳烃和稠环环烷烃。传统的溶剂精制工艺是选择性地抽提脱除低黏度指数的多环烃类及其它杂环化合物( 如硫、氮化合物,胶质等) ,从而提高油品的黏度指数,使颜色和抗氧化安定性得到改善,这种物理分离的方法只能保留原料中原有的理想组分,基础油收率、黏度指数和其它性能的改善有限。润滑油加氢处理则是通过深度加氢转化的方法,使多环烃类变为理想组分,同时几乎*脱除杂环化合物,因而基础油收率高、油品各项质量指标的改善更加明显。
加氢处理过程中,发生的化学反应主要有:①脱除杂环化合物;②芳烃饱和,环烷烃开环及异构化,这种反应是提高黏度指数主要的反应;③正构烷烃或低分支异构烷烃临氢异构化为高分支异构烷烃;④烷烃的加氢裂化以及带有长烷基侧链环烷烃的加氢脱烷基反应。这类反应将导致轻油的产生,使基础油收率降低。前三项是有利于反应,第四项是需要抑制的反应。
异构脱蜡工艺
随着环境保护法规日趋严格以及机械工业( 特别是汽车工业) 的发展,对润滑油性能提出了更高的要求。为了生产这些高性能的润滑油,特别是要调配大跨度多级内燃机油,必须采用低挥发性、高黏度指数的基础油,即VI大于120、饱和度大于90% 。主要成分为异构烷烃的APIⅢ类基础油具有这些性能特点,可以满足上述要求。采用溶剂脱蜡和催化脱蜡工艺是不能生产Ⅲ类基础油的,因为这两种加工方法只能将高黏度指数的正构烷烃从油品中除去,造成基础油的黏度指数低,而不能将这些高黏度指数的正构烷烃转化为高黏度指数、低倾点的异构烷烃,这不但使基础油收率低,而且不能满足高质量基础油的规格要求。异构脱蜡的基本原理就是在专门分子筛催化剂的作用下,将高倾点的正构烷烃异构化为低倾点的支链烷烃,异构脱蜡已成为当代生产API Ⅲ类基础油的重要手段。已实现工业化的润滑油异构脱蜡技术主要是Chevron的Isodewaxing技术和Exxon Mobil公司的MSDW技术。 [2]
理化性质
编辑
外观(色度)
油品的颜色,往往可以反映其精制程度和稳定性。对于基础油来说,一般精制程度越高,其烃的氧化物和硫化物脱除的越干净,颜色也就越浅。但是,即使精制的条件相同,不同油源和基属的原油所生产的基础油,其颜色和透明度也可能是不相同的。
对于新的成品润滑油,由于添加剂的使用,颜色作为判断基础油精制程度高低的指标已失去了它原来的意义。
密度
密度是润滑油简单、常用的物理性能指标。润滑油的密度随其组成中含碳、氧、硫的数量的增加而增大,因而在同样粘度或同样相对分子质量的情况下,含芳烃多的,含胶质和沥青质多的润滑油密度,含环烷烃多的居中,含烷烃多的小。
粘度
粘度反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。
粘度指数
粘度指数表示油品粘度随温度变化的程度。粘度指数越高,表示油品粘度受温度的影响越小,其粘温性能越好,反之越差。
闪点
闪点是表示油品蒸发性的一项指标。油品的馏分越轻,蒸发性越大,其闪点也越低。反之,油品的馏分越重,蒸发性越小,其闪点也越高。同时,闪点又是表示石油产品着火危险性的指标。油品的危险等级是根据闪点划分的,闪点在45℃以下为易燃品,45℃以上为可燃品,在油品的储运过程中严禁将油品加热到它的闪点温度。在粘度相同的情况下,闪点越高越好。因此,用户在选用润滑油时应根据使用温度和润滑油的工作条件进行选择。一般认为,闪点比使用温度高20~30℃,即可安全使用。
凝点和倾点
凝点是指在规定的冷却条件下油品停止流动的温度。油品的凝固和纯化合物的凝固有很大的不同。油品并没有明确的凝固温度,所谓"凝固"只是作为整体来看失去了流动性,并不是所有的组分都变成了固体。
润滑油的凝点是表示润滑油低温流动性的一个重要质量指标。对于生产、运输和使用都有重要意义。凝点高的润滑油不能在低温下使用。相反,在气温较高的地区则没有必要使用凝点低的润滑油。因为润滑油的凝点越低,其生产成本越高,造成不必要的浪费。一般说来,润滑油的凝点应比使用环境的温度低5~7℃。但是特别还要提及的是,在选用低温的润滑油时,应结合油品的凝点、低温粘度及粘温特性全面考虑。因为低凝点的油品,其低温粘度和粘温特性亦有可能不符合要求。
凝点和倾点都是油品低温流动性的指标,两者无原则的差别,只是测定方法稍有不同。同一油品的凝点和倾点并不*相等,一般倾点都高于凝点2~3℃,但也有例外。
酸碱值
酸值是表示润滑油中含有酸性物质的指标,单位是mgKOH/g。酸值分强酸值和弱酸值两种,两者合并即为总酸值(简称TAN)。我们通常所说的"酸值",实际上是指"总酸值(TAN)"。
碱值是表示润滑油中碱性物质含量的指标,单位是mgKOH/g。
碱值亦分强碱值和弱碱值两种,两者合并即为总碱值(简称TBN)。我们通常所说的"碱值"实际上是指"总碱值(TBN)"。
中和值
中和值实际上包括了总酸值和总碱值。但是,除了另有注明,一般所说的"中和值",实际上仅是指"总酸值",其单位也是mgKOH/g。
水分
水分是指润滑油中含水量的百分数,通常是重量百分数。润滑油中水分的存在,会破坏润滑油形成的油膜,使润滑效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣。总之,润滑油中水分越少越好。
机械杂质
机械杂质是指存在于润滑油中不溶于汽油、乙醇和苯等溶剂的沉淀物或胶状悬浮物。这些杂质大部分是砂石和铁屑之类,以及由添加剂带来的一些难溶于溶剂的有机金属盐。通常,润滑油基础油的机械杂质都控制在0.005%以下(机杂在0.005%以下被认为是无)。
硫酸灰分
灰分是指在规定条件下,灼烧后剩下的不燃烧物质。灰分的组成一般认为是一些金属元素及其盐类。灰分对不同的油品具有不同的概念,对基础油或不加添加剂的油品来说,灰分可用于判断油品的精制深度。对于加有金属盐类添加剂的油品(新油),灰分就成为定量控制添加剂加入量的手段。国外采用硫酸灰分代替灰分。其方法是:在油样燃烧后灼烧灰化之前加入少量浓硫酸,使添加剂的金属元素转化为硫酸盐。
残炭
油品在规定的实验条件下,受热蒸发和燃烧后形成的焦黑色残留物称为残炭。残炭是润滑油基础油的重要质量指标,是为判断润滑油的性质和精制深度而规定的项目。润滑油基础油中,残炭的多少,不仅与其化学组成有关,而且也与油品的精制深度有关,润滑油中形成残炭的主要物质是:油中的胶质、沥青质及多环芳烃。这些物质在空气不足的条件下,受强热分解、缩合而形成残炭。油品的精制深度越深,其残炭值越小。一般讲,基础油的残炭值越小越好。
截止2013年10月,许多油品都含有金属、硫、磷、氮元素的添加剂,它们的残炭值很高,因此含添加剂油的残炭已失去残炭测定的本来意义。机械杂质、水分、灰分和残炭都是反映油品纯洁性的质量指标,反映了润滑基础油精制的程度。润滑油的生产过程
主要以来自原油蒸馏装置的润滑油馏分和渣油馏分为原料。在这些馏分中,即含有理想组分,也含有各种杂质和非理想组分。通过溶剂脱沥青、溶剂脱蜡、溶剂精制、加氢精制或或酸碱精制、白土精制(见石油产品精制)等工艺,除去或降低形成游离碳的物质、低粘度指数的物质、氧化安定性差的物质、石蜡以及影响成品油颜色的化学物质等非理想组分,得到合格的润滑油基础油,经过调合并加入适当添加剂后即成为润滑油产品。
作用
编辑
按其来源分动物油、植物油,石油润滑油和合成润滑油四大类。
石油润滑油的用量占总用量90%以上,因此润滑油常指石油润滑油。主要用于减少运动部件表面间的摩擦,同时对机器设备具有冷却、密封、防腐、防锈、绝缘、功率传送、清洗杂质等作用。主要以来自原油蒸馏装置的润滑油馏分和渣油馏分为原料。润滑油主要的性能是粘度、氧化安定性和润滑性,它们与润滑油馏分的组成密切相关。粘度是反映润滑油流动性的重要质量指标。不同的使用条件具有不同的粘度要求。重负荷和低速度的机械要选用高粘度润滑油。氧化安定性表示油品在使用环境中,由于温度、空气中氧以及金属催化作用所表现的抗氧化能力。油品氧化后,根据使用条件会生成细小的沥青质为主的碳状物质,呈粘滞的漆状物质或漆膜,或粘性的含水物质,从而降低或丧失其使用性能。润滑性表示润滑油的减磨性能。润滑油添加剂概念是加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。添加剂按功能分主要有抗氧剂和金属减活剂、极压抗磨剂、摩擦改善剂(又名油性剂)、清净分散剂、泡沫抑制剂、防锈剂、抗氧防腐剂、流点改善剂、粘度指数增进剂、抗乳剂等类型。市场中所销售的添加剂一般都是以上各单一添加剂的复合品,所不同的就是单一添加剂的成分不同以及复合添加剂内部几种单一添加剂的比例不同而已。
润滑
发动机在运转时,如果一些摩擦部位得不到适当的润滑,就会产生干摩擦。实践证明,干摩擦在短时间内产生的热量足以使金属熔化,造成机件的损坏甚至卡死(许多漏水或漏油的汽车出现拉缸、抱轴等故障,主要原因就在于此)。因此必须对发动机中的摩擦部位给予良好的润滑。当润滑油流到摩擦部位后,就会粘附在摩擦表面上形成一层油膜,减少摩擦机件之间的阻力,而油膜的强度和韧性是发挥其润滑作用的关键。但是又不能用量过大,因为量过大时会产生平方关系的阻力,对转速影响极大,所以在用量上要特别注意。
冷却
燃料在发动机内燃烧后产生的热量,只有一小部分用于动力输出以及摩擦阻力消耗和辅助机构的驱动上;其余大部分热量除随废气排到大气中外,还会被发动机中的冷却介质带走一部分。发动机中多余的热必须排出机体,否则发动机会由于温度过高而烧坏。这一方面靠发动机冷却系来完成,另一方面靠润滑油从气缸、活塞、曲轴等表面吸收热量后带到油底壳中散发。
洗涤
发动机工作中,会产生许多污物。如吸入空气中带来的砂土、灰尘,混合气燃烧后形成的积炭,润滑油氧化后生成的胶状物,机件间摩擦产生金属屑等等。这些污物会附着在机件的摩擦表面上,如不清洗下来,就会加大机件的磨损。另外, 的胶质会使活塞环粘结卡滞,导致发动机不能正常运转。因此,必须及时将这些污物清理,这个清洗过程是靠润滑油在机体内循环流动来完成的。
密封
发动机的气缸与活塞、活塞环与环槽以及气门与气门座间均存在一定间隙,这样能保证各运动副之间不会卡滞。但这些间隙可造成气缸密封不好,燃烧室漏气结果是降低气缸压力及发动机输出功率。润滑油在这些间隙中形成的油膜,保证了气缸的密封性,保持气缸压力及发动机输出功率,并能阻止废气向下窜入曲轴箱。
防锈
发动机在运转或存放时,大气、润滑油、燃油中的水分以及燃烧产生的酸性气体,会对机件造成腐蚀和锈蚀,从而加大摩擦面的损坏。润滑油在机件表面形成的油膜,可以避免机件与水及酸性气体直接接触,防止产生腐蚀、锈蚀。
消除冲击载荷
在压缩行程结束时,混合气开始燃烧,气缸压力急剧上升。这时,轴承间隙中的润滑油将缓和活塞、活塞销、连杆、曲轴等机件所受到的冲击载荷,使发动机平稳工作,并防止金属直接接触,减少磨损。
国家标准
编辑
1987年,中国颁布了GB 498-87《石油产品及润滑剂的总分类》,根据石油产品的主要特征对石油产品进行分类,其类别名称分为燃料、溶剂和化工原料、润滑剂和有关产品、蜡、沥青、焦等六大类。其类别名称的代号取自反映各类产品主要特征的英文名称的个字母,见表3。由表3可知,润滑剂和有关产品的代号为英文字母“L”。
国家标准GB 498-87颁布的同年,中国颁布了GB 7631.1-87《润滑剂和有关产品(L)类的分类 部分:总分组》。GB 7631.1-87根据GB 498-87《石油产品及润滑剂的总分类》的规定而制定,代替了GB 500-65,系等效采用ISO 6743/0-1981《润滑剂、工业润滑油和有关产品(L类)的分类—第0部分:总分组》。该标准根据尽可能地包括润滑剂和有关产品的应用场合这一原则,将润滑剂分为19个组。
每组润滑剂根据其产品的主要特性、应用场合和使用对象再详细分类。(1)产品的主要特性是指:润滑油的粘度、防锈、防腐、抗燃、抗磨等理化性能;润滑脂的滴点、锥入度、防水、防腐等理化性能。(2)产品的应用场合主要指机械使用条件的苛刻程度,例如,齿轮油分为工业开式齿轮油、工业闭式齿轮油、车辆齿轮油。车辆齿轮油又分普通车辆齿轮油、中负荷车辆齿轮油和重负荷车辆齿轮油等。(3)产品的使用对象主要是指机械的种类和结构特点。例如,内燃机油分为汽油机油、二冲程汽油机油和柴油机油等。